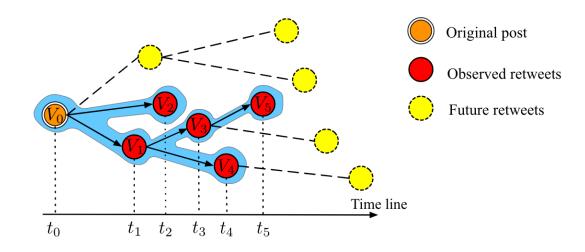


节点流行度预测

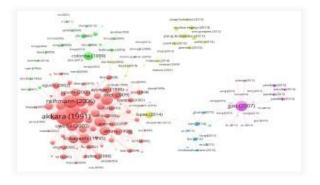
北航计算机学院 姬硕 2023年6月16日

Node Popularity Prediction

- Forecast **how many users** would like to interact with a target item or online content in the future
- Online Social Network, Paper Citation Network...

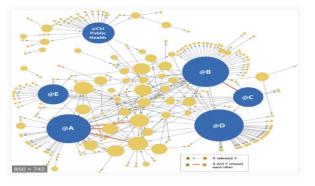


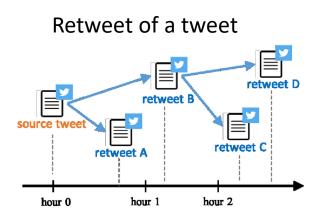
• Help online shopping or social media platforms to **identify popular items or digital content**



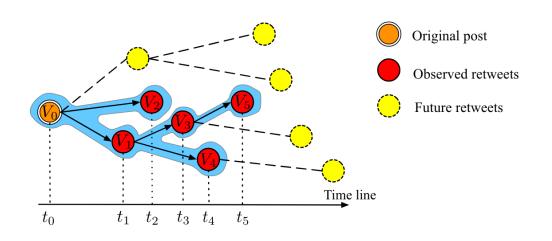
Citation of publication

Forwarding of Weibo



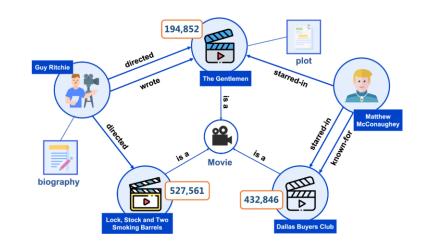


- A task to forecast how many users would like to interact with a target item or online content in the future
- Online Social Network, Paper Citation
 Network...

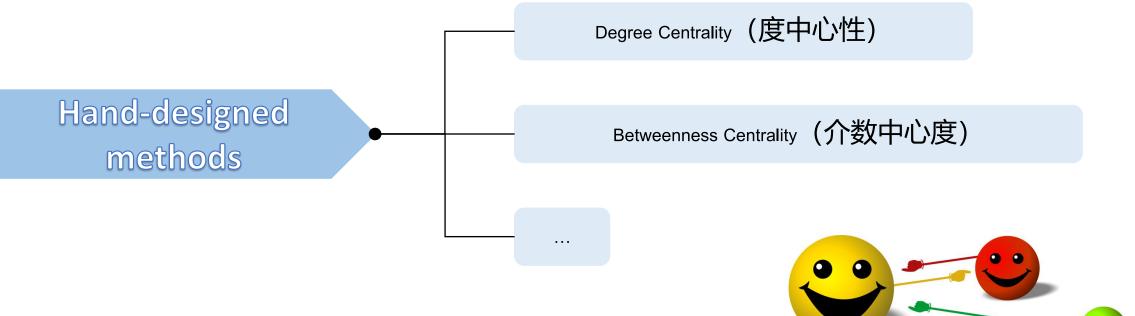


Node Importance Estimation

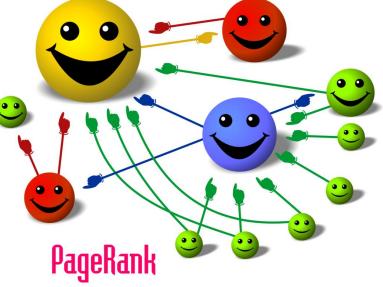
- A task of inferring the significance or the popularity of a node in a graph according to the structure and attribute information
- Knowledge Graph



Hand-designed methods



- prior assumptions
- no learnable parameters



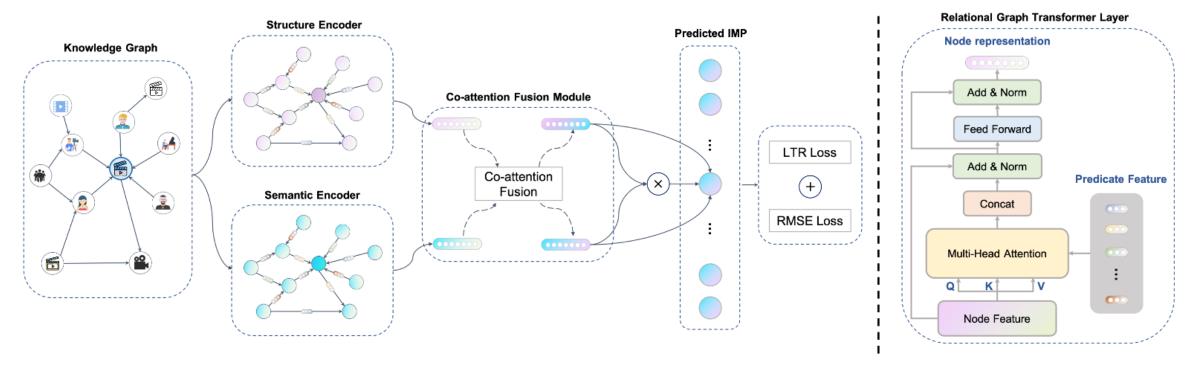
Machine Learning Model

- 性能高度依赖于提取的节点特征
- 无法捕获图中丰富的信息

Hand-designed
MethodsMachine-learned
MethodsGraph
Representation
Learning Methods

- 自动地学习节点的表示
- 提取图结构信息

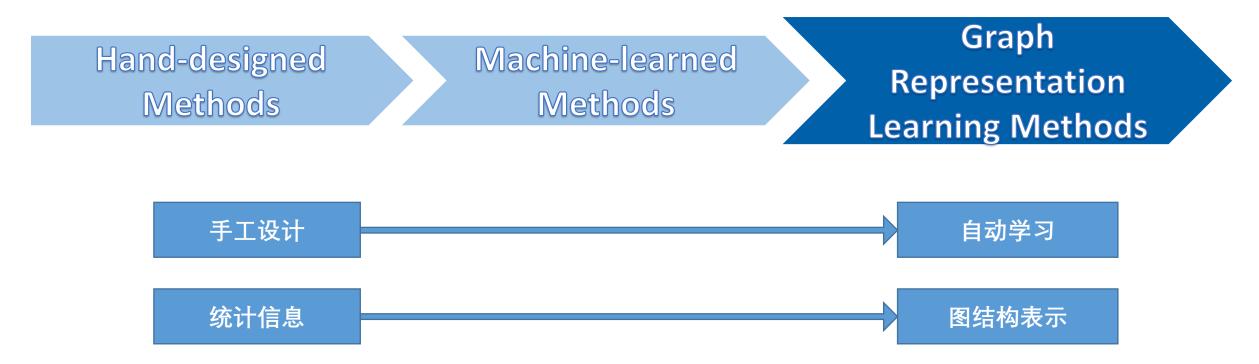
Graph Representation Learning Methods



- Aggregate messages of neighbors
- Leverage abundant structural and semantic information

Huang H, Sun L, Du B, et al. Representation Learning on Knowledge Graphs for Node Importance Estimation. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 646-655.

Related Work



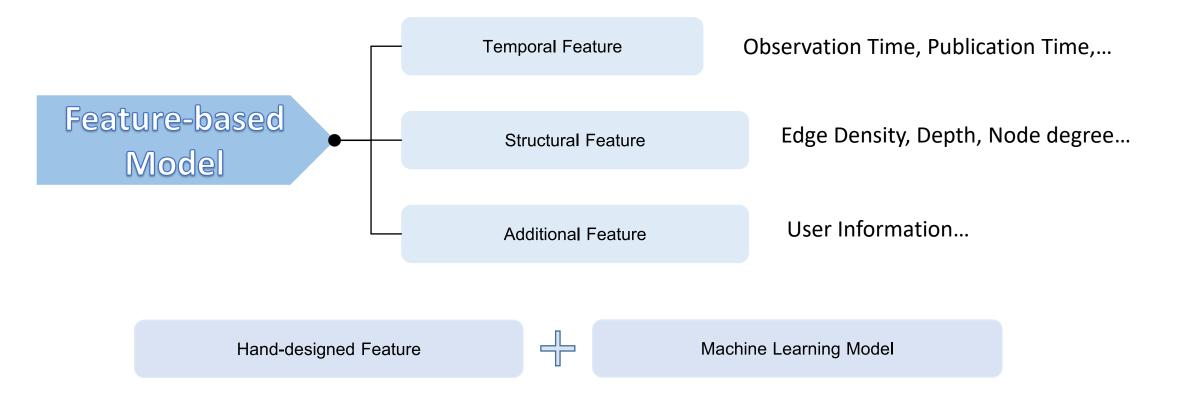
Cascade

- Given a message *m*, the diffusion process of m on the network generates a cascade *c*.
- We use a chronological sequence $c(t) = (u_i^c, v_i^c, t_i^c)$ to represent the diffusion process of m before time t.

Node Popularity Prediction

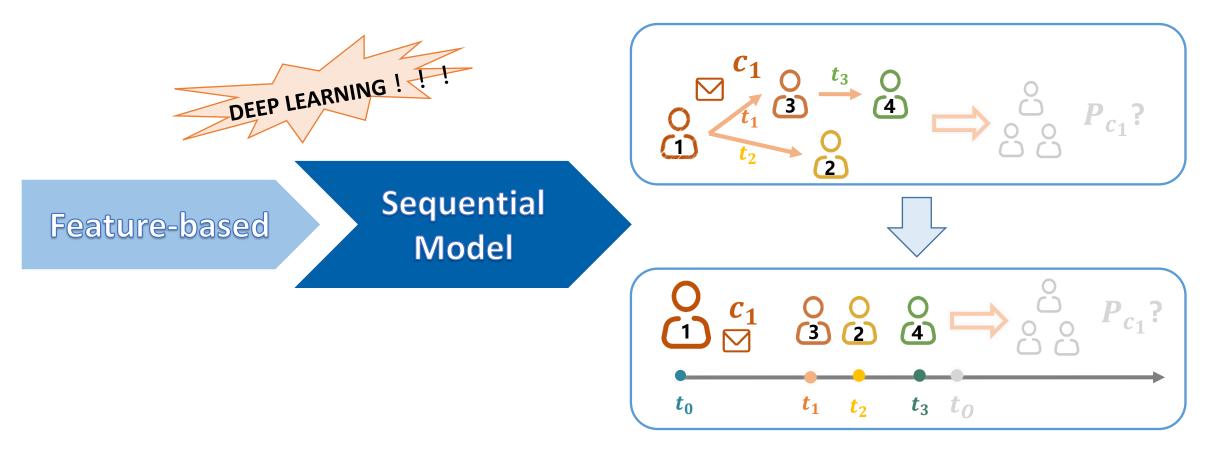
• Given a cascade c begins at t_0^c , predict its incremental popularity from t_0^c to $t_0^c + t_p$.

Feature-based Model

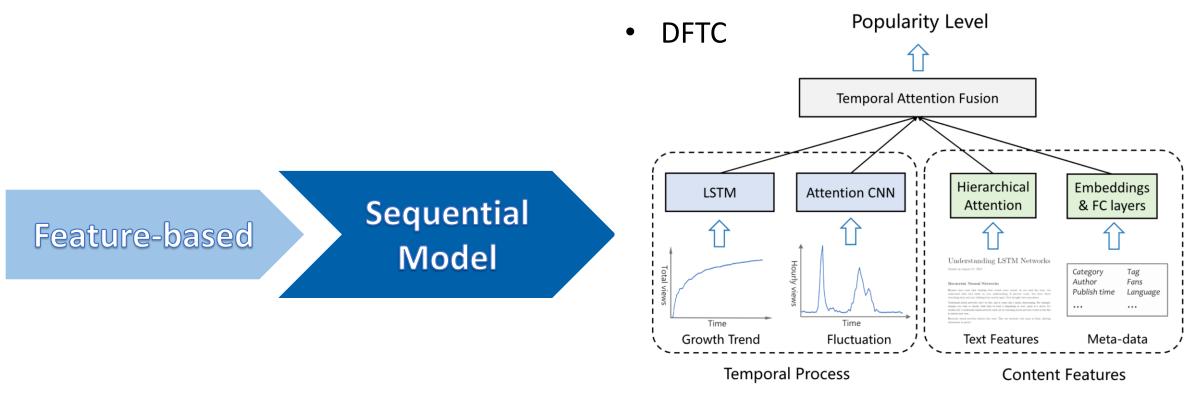


- 性能高度依赖于提取的节点特征
- 特征提取过程中丢失大量信息

Sequential Model



Sequential Model

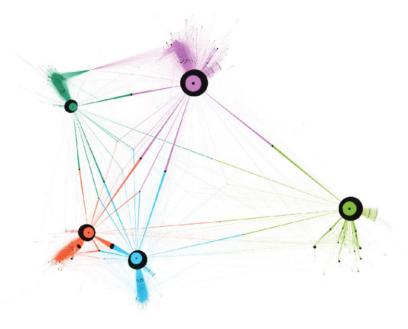


 Adopt recurrent neural network for modeling the long term growth trend and convolutional neural network for capturing short term fluctuations

Chen X, Zhou F, Zhang K, et al. Information diffusion prediction via recurrent cascades convolution. 2019 IEEE 35th international conference on data engineering (ICDE). IEEE, 2019: 770-781.

Sequential Model

F



t₂

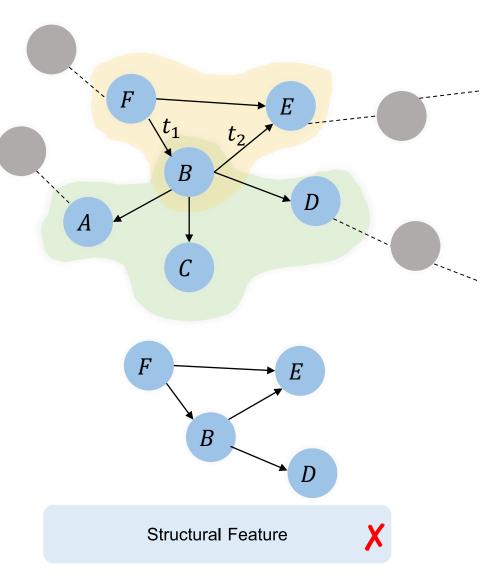
R

Temporal Feature

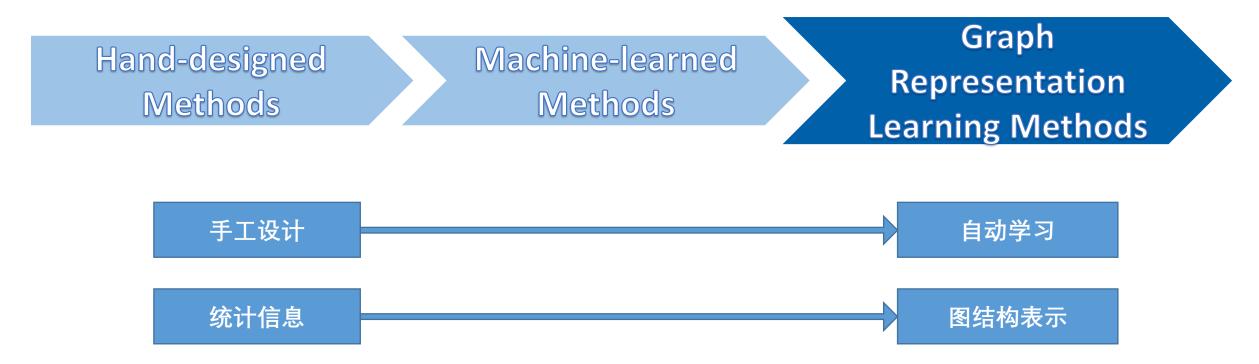
E

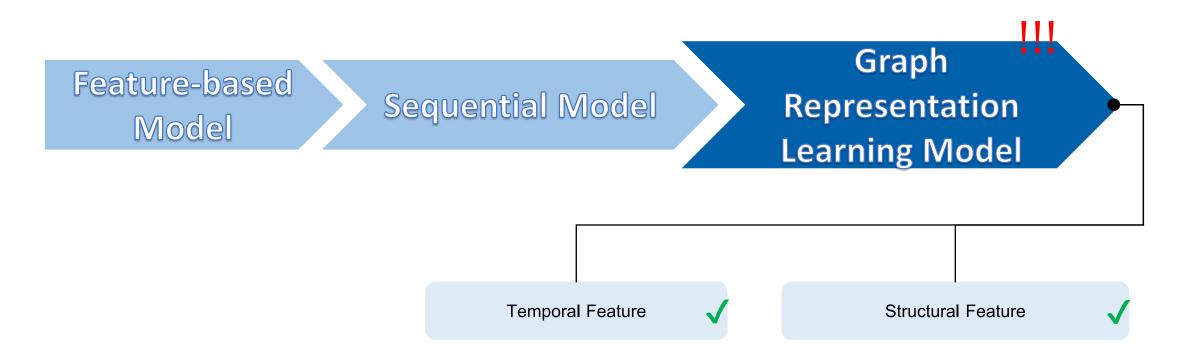
 \checkmark

Correlation between cascades X



Related Work





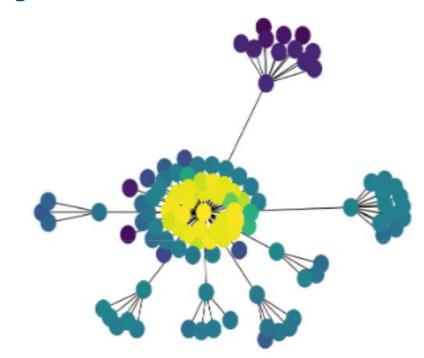
Structural Feature

Cascade Graph

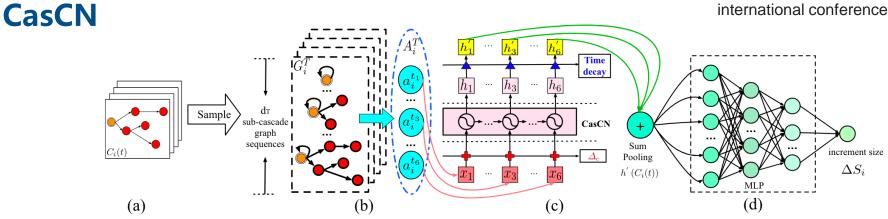
• Given an information item I_i and the corresponding cascade c_i , a **cascade graph** is defined as $\mathcal{G}_g = (\mathcal{V}_c, \mathcal{E}_c)$, where nodes \mathcal{V}_c are **all participants** of cascade c_i , and matrix \mathcal{E}_c contains a set of edges representing all the **relationships** between \mathcal{V}_c in a cascade.

Global Graph

A global graph G_g = (V_g, ε_g) is a collection
 of V_g nodes and a set of ε_g ⊆ V_g × V_g
 edges.

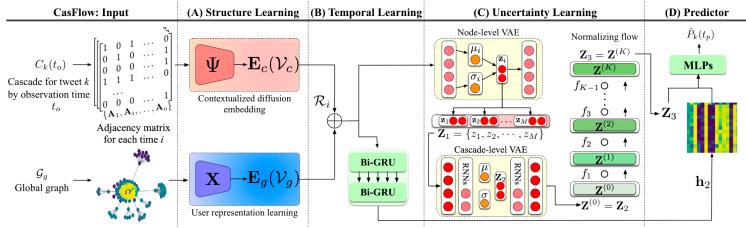


Chen X, Zhou F, Zhang K, et al. Information diffusion prediction via recurrent cascades convolution. IEEE 35th international conference on data engineering (ICDE). 2019.



• Learn the structural and temporal patterns via the combination of classical LSTM and GCN

CasFlow Xovee Xu, Fan Zhou, Kunpeng Zhang, Siyuan Liu, and Goce Trajcevski. 2021. CasFlow: Exploring Hierarchical Structures and Propagation Uncertainty for Cascade Prediction. IEEE Transactions on Knowledge and Data Engineering (2021)



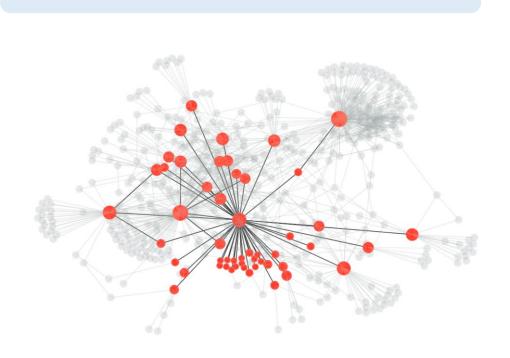
- Graph embedding technique and sparse matrix factorization
- Jointly models cascades from both a micro (user) and a macro (overall cascade estimating) level

Motivation

Cascade Graph

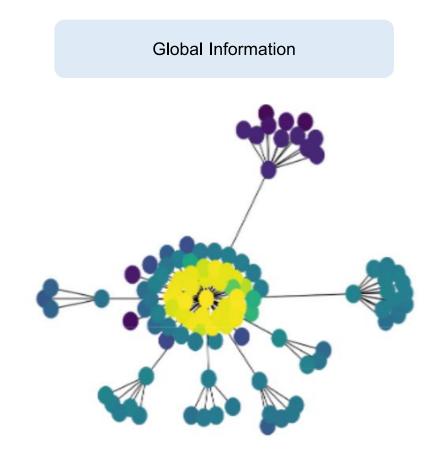
 A cascade graph is constructed based on its participants and their interactions.

Local Spread of Information

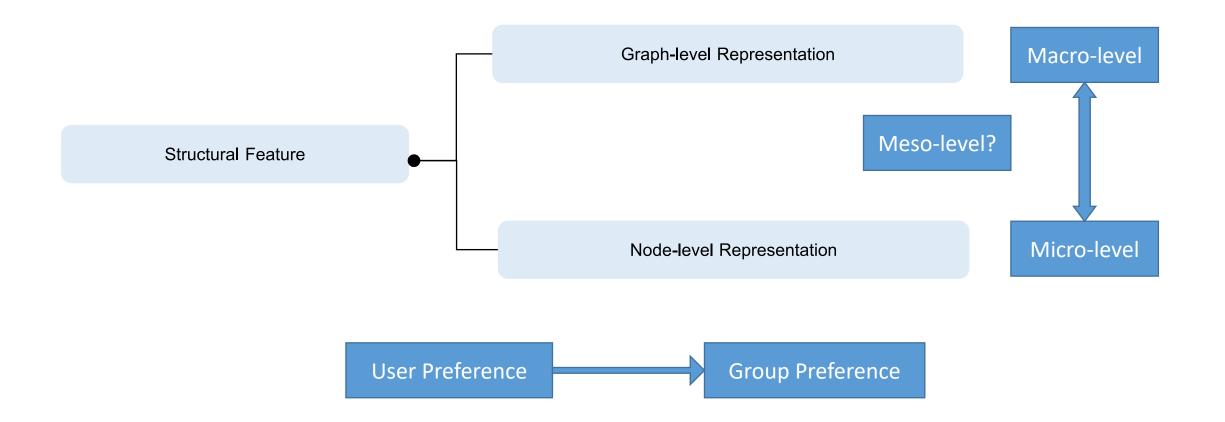


Global Graph

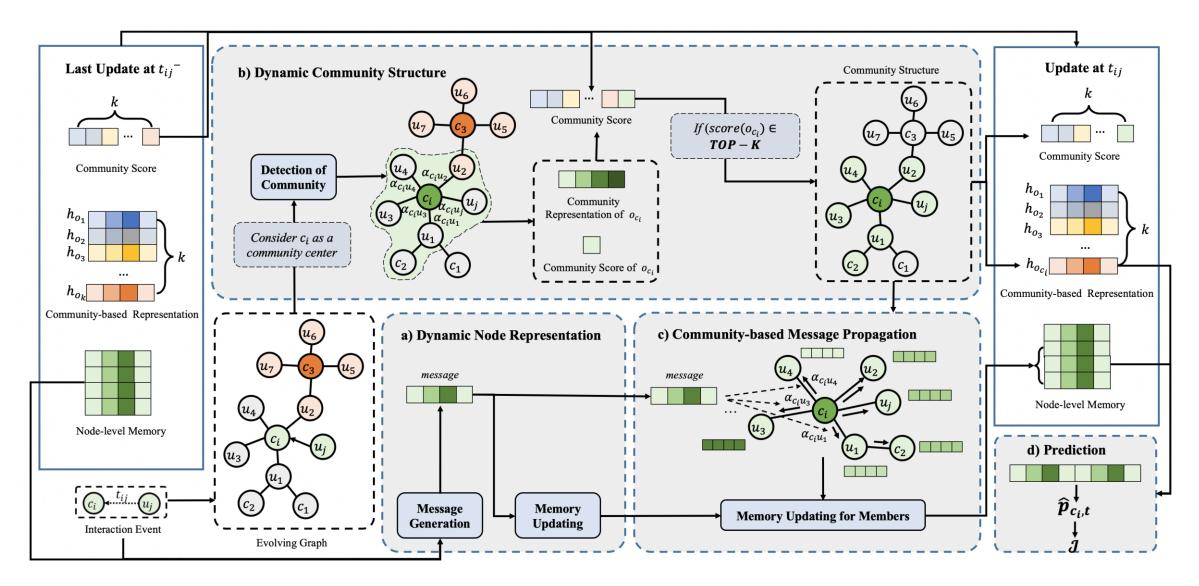
 A global graph is a collection of all nodes and a set of their edges.



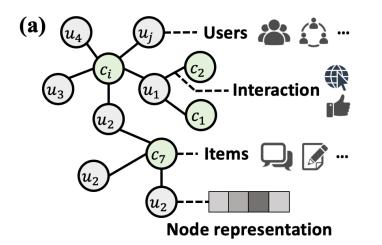
Motivation

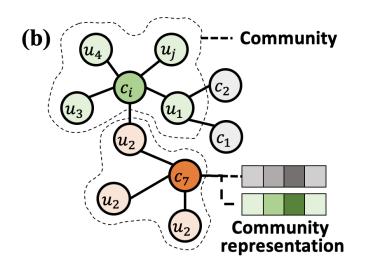


Community-based Dynamic Graph Learning for Popularity Prediction



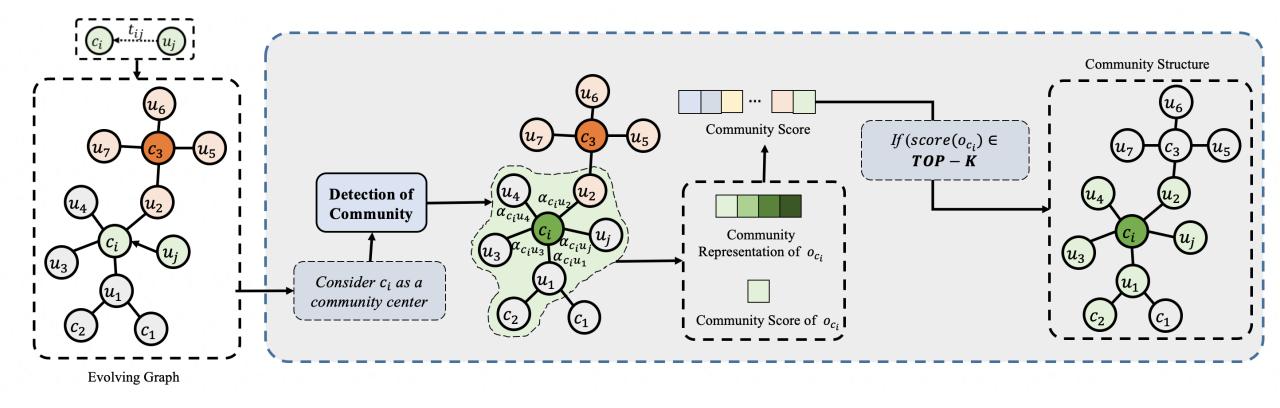
Community





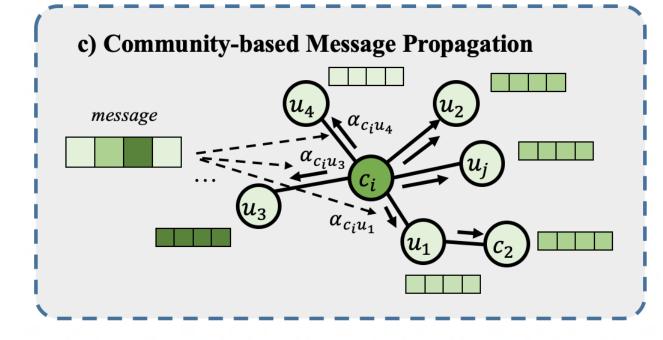
- People tends to form groups based on similar interests, backgrounds and hobbies, etc. Moreover, graphs in real world often contain a number of communities with star-like structures which consist of a popular central node connected to many peripheral nodes.
- We model network as a user-item bi-graph, and communities are formed based on group preference. Each community is represented by an influential user or typical item which act as a community center. People with similar interests, and items with similar topic are assigned to the community.

Community Detection



• learning both temporal group preference and high-order structural information

Community-based Message Propagation



- Propagate messages to the whole community to spread the effect of event
- Since users in same community have similar interests and more likely to interact with similar items

Experiment

Results

Datasets

 Table 2: Statistics of datasets.

Datasets	#Users	#Items	#Interactions
Twitter	18297	11544	3312348
AMiner	25490	8562	2104091
APS	23989	11159	1944509

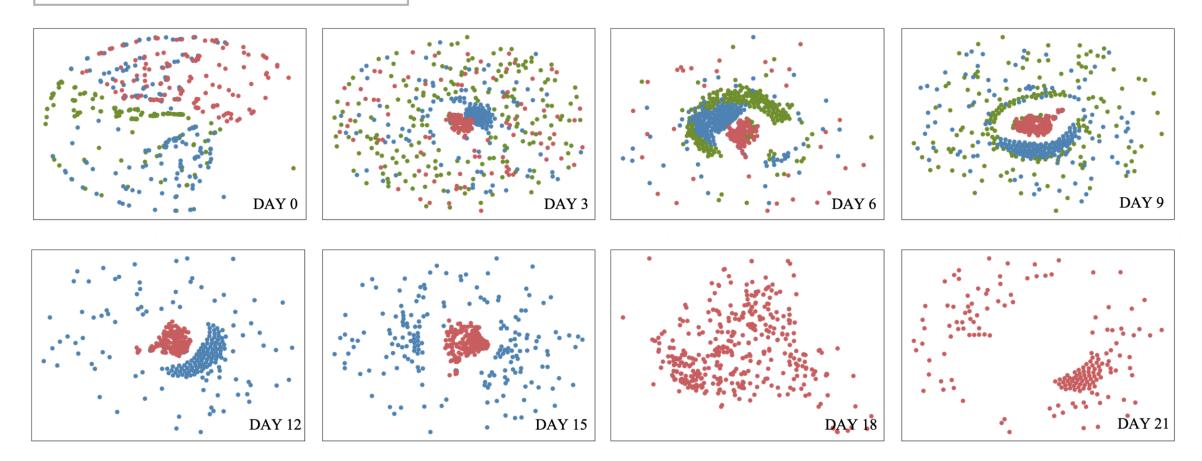
Table 3: Performance of different methods.

Model	Twitter			AMiner			APS					
	MSLE	MALE	MAPE	PCC	MSLE	MALE	MAPE	PCC	MSLE	MALE	MAPE	PCC
DT	4.4247	1.6282	0.4831	0.4416	2.1208	1.1182	0.3133	0.7554	2.5917	1.2643	0.3669	0.6382
SVR	3.8866	1.6257	0.5237	0.4828	2.6203	1.2680	0.4016	0.6601	2.3908	1.2203	0.3836	0.5910
LSTM	4.2281	1.6653	0.5309	0.5056	2.3736	1.2591	0.4074	0.8215	2.2889	1.2108	0.3926	0.7298
DFTC	2.3737	1.1200	0.3611	0.6387	1.3159	0.8901	0.2903	0.8690	1.6744	1.0079	0.3256	0.7760
LightGCN	4.3951	1.4277	0.3560	0.5965	2.7766	1.2604	0.2991	0.7784	2.3054	1.1885	0.3114	0.7546
CasFlow	2.4185	1.1732	0.3355	0.5980	1.4883	0.9401	0.2672	0.7908	1.7894	1.0557	0.3101	0.6903
TGN	2.2789	1.1550	0.3470	0.6377	1.1302	0.8330	0.2455	0.8475	1.2763	0.8846	0.2779	0.7985
CDGP	2.0182	1.0742	0.3370	0.7028	0.9574	0.7677	0.2317	0.8727	1.2256	0.8683	0.2680	0.8004

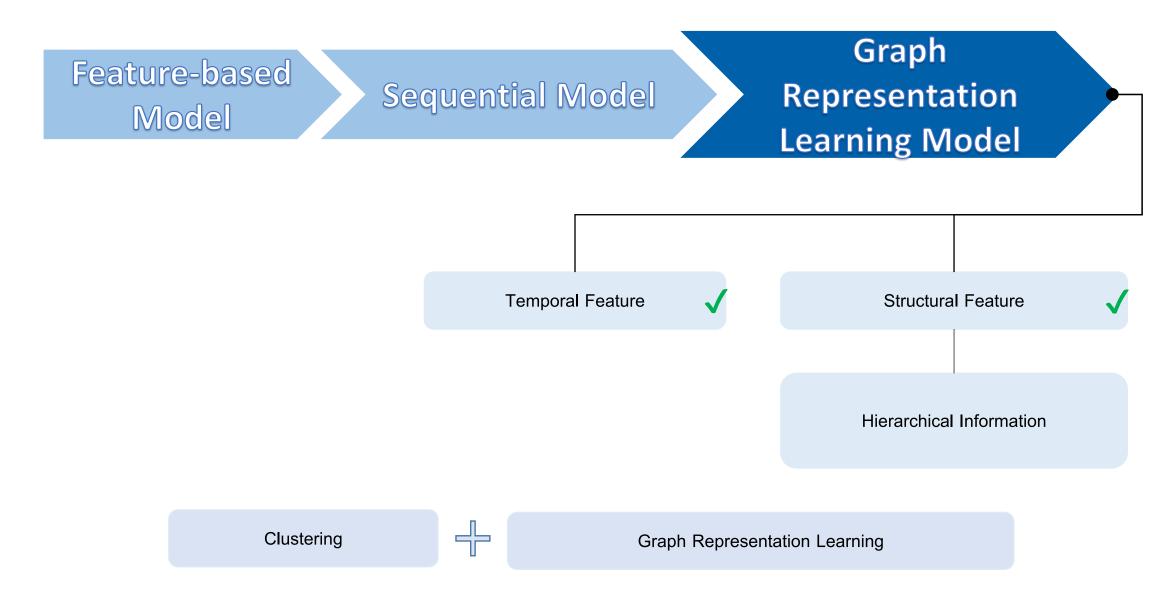
Experiment

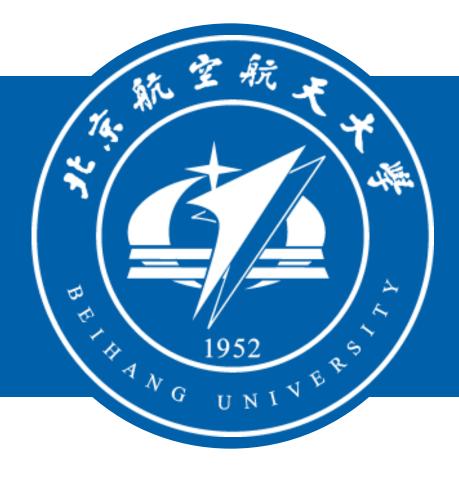
Results

• Community 1 • Community 2 • Community 3



Future Work





北航计算机学院 姬硕 2023年6月16日